
BRAIN
A JOURNAL OF NEUROLOGY

White matter integrity as a predictor of response
to treatment in first episode psychosis
Tiago Reis Marques,1 Heather Taylor,1 Chris Chaddock,1 Flavio Dell’Acqua,2 Rowena Handley,1

A. A. T. Simone Reinders,1 Valeria Mondelli,3 Stefania Bonaccorso,1 Marta DiForti,1

Andrew Simmons,2 Anthony S. David,1 Robin M. Murray,1 Carmine M. Pariante,3 Shitij Kapur1 and
Paola Dazzan1,4

1 Department of Psychosis Studies, Institute of Psychiatry, King’s College London, UK

2 Department of Neuroimaging, Institute of Psychiatry, King’s College London, UK

3 Department of Psychological Medicine, Institute of Psychiatry, King’s College London, UK

4 National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust

and King’s College London, UK

Correspondence to: Tiago Reis Marques, MD,

PO Box 063,

Department of Psychosis Studies,

Institute of Psychiatry;

De Crespigny Park,

London,

SE5 8AF,

UK

E-mail: tiago.marques@kcl.ac.uk

The integrity of brain white matter connections is central to a patient’s ability to respond to pharmacological interventions. This

study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment

response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were

acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12

weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point,

they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional

anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both

responders and healthy control subjects (P50.05; family-wise error-corrected), mainly in the uncinate, cingulum and corpus

callosum, whereas responders were indistinguishable from healthy control subjects. After 12 weeks, there was an increase in

fractional anisotropy in both responders and non-responders, positively correlated with antipsychotic exposure. This represents

one of the largest, controlled investigations of white matter integrity and response to antipsychotic treatment early in psychosis.

These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of

treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate

care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response.
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Introduction
Response to treatment in first episode of psychosis is heteroge-

neous, with approximately 55% of patients responding to anti-

psychotics in the first 12 months (Boter et al., 2009). The early

discrimination between responders and non-responders is there-

fore of crucial importance, as it can reduce disability, healthcare

costs, and eventually improve long-term outcome (Correll et al.,

2003; Ascher-Svanum et al., 2008). With psychiatric neuroima-

ging moving towards approaches that may deliver clinically

useful outcomes (Borgwardt and Fusar-Poli, 2012), attention has

shifted to the identification of neuroimaging markers as potential

early predictors of response. These could lead to a step forward in

understanding not only the pathophysiology of the disorder, but

most importantly, the neural basis of treatment response.

Most studies on neuroanatomical markers of response have

investigated the role of grey matter (Bodnar et al., 2012), whereas

little attention has been paid to white matter. This is surprising as

loss of white matter integrity has been suggested as a key com-

ponent of psychotic disorders (McGuire and Frith, 1996). In fact,

reductions of fractional anisotropy, a marker of white matter

microstructural integrity, are already apparent at the first psychotic

episode (Pérez-Iglesias et al., 2010), before antipsychotic treat-

ment (Cheung et al., 2008), and even in individuals at ultra-

high risk of developing psychosis (Carletti et al., 2012).

Nevertheless, to date, only a handful of studies have examined

the association between white matter and response to treatment,

with inconsistent findings (Mitelman et al., 2006, 2009; Garver

et al., 2008; Luck et al., 2011). Two cross-sectional studies, sug-

gested an association between less extensive fractional anisotropy

reductions and subsequent good clinical outcome, in the whole-

brain and along tracts such as the uncinate and the superior lon-

gitudinal fasciculus (Mitelman et al., 2006; Luck et al., 2011).

However, these studies did not perform a second evaluation of

white matter at follow-up. Follow-up imaging studies can provide

more information than cross-sectional studies, as they allow the

identification of subtle within-subject anatomical changes and pro-

vide a true measure of the anatomical change over time that may

relate to treatment outcome. The only two published longitudinal

studies have been conducted in chronic patients, and they have

reported conflicting results (Garver et al., 2008; Mitelman et al.,

2009). The first study, in a small sample, showed that patients

with chronic schizophrenia who responded to antipsychotics

(n = 8), as assessed 28 days after the brain imaging, had reduced

white matter microstructural integrity compared with non-

responders (n = 5), who were in turn no different from control

subjects (Garver et al., 2008). In contrast, the second study, in a

sample of chronic patients, assessed response 4 years after the

brain imaging, and found that non-responders (n = 26) had

lower frontal and parietal fractional anisotropy compared with re-

sponders (n = 23) (Mitelman et al., 2009). Therefore, possibly be-

cause of the small samples and the inclusion of chronic patients, it

is difficult to disentangle which brain white matter changes may

predict response to treatment. Importantly, recent animal studies

indicate that antipsychotics may have a protective effect on white

matter (Bartzokis, 2012; Zhang et al., 2012). Therefore, any

longitudinal change in fractional anisotropy may be, at least in

part, attributable to antipsychotics. These questions can be best

addressed by investigating patients with first episode psychosis,

where treatment has occurred for only a short time, and the add-

itional effect of illness duration on brain white matter is less likely

to be present.

In this study, we evaluated a large sample (n = 63) of patients

with first episode psychosis, at baseline and again at 12 weeks

follow-up. To our knowledge, this is the first longitudinal diffusion

tensor imaging study in first episode psychosis. To evaluate the

relationship between white matter integrity and treatment re-

sponse, we used a whole-brain skeleton-based technique (tract-

based spatial statistics) (Smith et al., 2006). We hypothesized that:

(i) patients would show a decrease in white matter microstructural

integrity when compared with control subjects; (ii) patients’ ability

to respond to treatment would be associated with more marked

alterations in white matter microstructural integrity at baseline;

and (iii) antipsychotic treatment would be correlated with an im-

provement in white matter microstructural integrity at follow-up.

Materials and methods

Samples
Patients with first episode psychosis were recruited from the South

London and Maudsley Foundation Trust. Healthy control subjects

were recruited from the same catchment area. Healthy control subjects

were administered the Psychosis Screening Questionnaire (Bebbington

and Nayani, 1995), and excluded if they reported any psychotic symp-

tom or a history of psychotic illness.

Exclusion criteria included: history of head trauma or injury with

loss of consciousness 41 h; organic psychosis; learning disabilities; or

lack of English fluency. Ethical permission was obtained from the

Institute of Psychiatry Ethics Committee. After complete description

of the study to the subjects, written informed consent was obtained.

Assessments
All patients underwent two clinical and MRI assessments: the first as

soon as possible after their first contact with services, and the second

12 weeks after. This interval was chosen because of the clinical rec-

ommendation that antipsychotics should be continued for 6–8 weeks

before switching to a different medication (Taylor et al., 2007); hence,

a 12-week interval would provide information on treatment response

after at least one drug taken for an appropriate period of time.

Healthy control subjects had a single neuroimaging assessment. The

mean interval between scans was 89 days (�25.4 days). A total of 63

patients and 52 healthy control subjects underwent an MRI scan at

baseline (Table 1); 53 patients were re-assessed at follow-up, as 10

patients could not be traced. Forty-eight patients agreed to undergo a

second MRI scan: of these, six MRI scans could not be used because

of movement artefacts, leaving 42 MRI scans for inclusion in the lon-

gitudinal neuroimaging analysis. To rule out potential systematic

biases, we compared clinical and socio-demographic characteristics of

patients who did and did not complete the second MRI, and found no

significant differences. There were no differences between groups in

the proportion of antipsychotic-naive subjects at baseline, nor in ex-

posure to mood stabilizers, antidepressants or benzodiazepines (data

not shown).
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Clinical assessment

ICD-10 diagnoses were formulated by psychiatrists using OPCRIT +

(McGuffin et al., 1991), with good inter-rater reliability

(kappa = 0.9). Psychotic symptoms were evaluated, at baseline and

follow-up on the day of MRI using the Positive and Negative

Syndrome Scale (PANSS; Kay et al., 1987). This scale was also used

to evaluate treatment response as the primary outcome measure, as

required by the Remission criteria of the Schizophrenia Working Group

Consensus (Andreasen et al., 2005).

These criteria identify an absolute threshold in severity of symptoms

that should be reached for clinical improvement. We preferred this

methodology to symptom change cut-offs, which are arbitrary, may

be affected by variability in baseline symptom severity and are not

intuitively understood by clinicians.

According to these criteria, patients were defined as ‘responders’ if,

at 12-weeks, they had a final score of mild or less on eight defined

PANSS items. For those 10 patients who could not be re-assessed at

12 weeks, information on treatment response was obtained using the

Personal and Psychiatric History Schedule (PPHS; Jablensky et al.,

1992), which showed substantial agreement with PANSS score criteria

(kappa = 0.72). Therefore, all patients assessed at baseline were clas-

sified according to their subsequent response: 30 as responders, 33 as

non-responders. Duration of untreated psychosis was quantified as the

interval between first psychotic symptoms and first contact with psy-

chiatric services. Antipsychotic doses were converted to chlorpromaz-

ine equivalents (Atkins et al., 1997; Woods, 2003), and a total

cumulative antipsychotic dose was calculated by summing all daily

doses from the first day of treatment up to each MRI scan. Fifty-

five patients were taking atypical antipsychotics, five typical and

three were medication-naı̈ve. Premorbid IQ and handedness were

assessed using the Wechsler Abbreviated Scale for Intelligence

(Wechsler, 1997) and the Annett Hand Preference Questionnaire,

respectively (Annett 1970).

Neuroimaging evaluation

Image acquisition

Data were acquired on a 3.0 T, GE Signa-HDx system running soft-

ware release 14M5 with actively shielded magnetic field gradients

(maximum amplitude 40 mT/m). Body coil was used for radiofre-

quency transmission, with 8-channel head coil for signal reception,

allowing a parallel imaging (ASSET) speed-up factor of two. Each

volume was acquired using a multi-slice peripherally-gated doubly

refocused spin echo-echo planar imaging sequence, optimized for pre-

cise measurement of the diffusion tensor in parenchyma, from 60

contiguous near-axial slice locations with isotropic (2.4 � 2.4 �

2.4 mm) voxels. Echo time was 104.5 ms and repetition time varied

between 12–20 R–R intervals. Maximum diffusion-weighting was

1300 s/mm2, and at each slice location, four images were acquired

with no diffusion gradients applied, together with 32 diffusion-

weighted images with gradient directions uniformly distributed in

space. An inhouse automated analysis technique assessed the quality

of echo planar imaging data (Simmons et al., 1999). Acquisition was

gated to the cardiac cycle using a peripheral gating device placed on

the subjects’ forefingers.

Image processing

Diffusion data were processed using ExploreDTI. Data were first pre-

processed correcting for eddy current distortions and head motion.

For each subject the b-matrix was then re-oriented to provide a

more accurate estimate of tensor orientations. The diffusion-tensor

was estimated using a non-linear least square approach, with fractional

anisotropy calculated from the diffusion-tensor. Voxel-wise statistical

analysis of fractional anisotropy was carried out using TBSS v1.2

(tract-based spatial statistics) (http://www.fmrib.ox.ac.uk/fsl/tbss/)

(Smith, 2002; Smith et al., 2004, 2006) to compare groups of

diffusion-weighted measures. First, fractional anisotropy images were

Table 1 Demographic and clinical characteristics of responders, non-responders and healthy control subjects

Responders
(n = 30)

Non-responders
(n = 33)

Control
subjects
(n = 52)

Test
statistic

Age at scan (mean years, SD) 27.7 (7.1) 27.7 (9.2) 25.1 (6.5) df (113); F = 0.6; P = n.s.

Sex (male/female) 18/12 22/11 25/27 df (2); �2 = 2.9; P = n.s.

Handedness: right-handed (%) 89 94 82 df (2); �2 = 1.9; P = n.s.

Education (mean years, SD) 13.9 (2.9) 12.8 (2.5) 14.9 (3.1) df (85); F = 17; P = 0.09

Full scale IQ (mean, SD) 95 (14) 91 (15) 103 (16) df (87); F = 0.9; P = n.s.

Diagnosis (% of affective psychosis) 87 75 n/a df (1); �2 = 0.34; P = n.s.

Schizophrenia 80 70

Schizoaffective disorder 7 5

Bipolar disorder 10 17

Depressive disorder 3 8

Use of cannabis (%) 77 70 48 df (113); F = 4.0; P = 0.19

Duration of untreated illness (duration of untreated psychosis)
(mean days, SD)

116 (182) 152 (200) n/a df (55); t = 0.6; P = n.s.

PANSS total score, baseline (mean, SD) 54.5 (13.0) 62.7 (13.5) n/a df (61); t = 2.3; P = 0.06

PANSS total score, follow-up (mean, SD) 41.3 (5.7) 58.7 (10.8) n/a df (40); t = 2.5; P = 0.001

Total antipsychotic dose at baseline (mean CPZ equivalents, SD) 9608 (14026) 9583 (11569) n/a df (61); t = 0.5; P = n.s.

Antipsychotics used (% of atypicals) 93 91 n/a df (1); �2 = 0.15; P = n.s.

Total antipsychotic dose at follow-up (mean CPZ equivalents, SD) 27572 (19859) 31608 (28999) n/a df (40); t = 0.2; P = n.s.

Inter-scan interval (mean days; SD) 89 (32) 90 (17) n/a df (40); t = 1.3; P = n.s.

CPZ = chlorpromazine; n.s. = P-value not significant; P-value presented if P50.1.
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registered to standard MNI space using the non-linear registration

tool in FSL (FNIRT) to the JHU-ICMB-DTI-81 atlas. A voxel-wise

average of all subjects was used to create a study-specific mean

fractional anisotropy image, which was then ‘skeletonized’ to create

a mean fractional anisotropy skeleton, representing the centres

of all white matter tracts. To exclude low anisotropic regions in

the skeleton, a fractional anisotropy threshold of 0.3 was applied.

Each subjects aligned fractional anisotropy maps were then projected

onto this skeleton and results fed into voxel-wise cross-subject

statistics.

Diffusion tensor imaging tractography

To investigate whether differences in white matter microstructural in-

tegrity were related to changes in white matter volume, a tractogra-

phy analysis of the tracts identified as most affected in the whole-brain

comparisons between responders and non-responders was performed

using TrackVis, with placement of regions of interest described else-

where (Catani et al., 2002; Catani and Thiebaut de Schotten, 2008).

For each tract the number of streamlines was calculated to obtain

proxy measurements of tract volume.

Statistical analysis
Whole-brain statistical analyses were performed using Randomise v2.1

(FSL). Longitudinal changes in fractional anisotropy were assessed by

subtracting the follow-up skeletonized fractional anisotropy image

from each individual’s baseline image. Statistical comparisons used

the threshold-free cluster enhancement (TFCE), using a non-paramet-

ric permutation test, in which group membership was permuted 5000

times to generate a null distribution for each contrast. Significant clus-

ters were identified where voxel-wise P-values were corrected for mul-

tiple comparisons [P5 0.05, family-wise error (FWE) corrected]. Age,

gender and handedness were de-meaned before analysis and used as

covariates of no-interest within the voxel-based analysis. Because of

differences in the duration of untreated psychosis between groups,

duration of untreated psychosis was calculated and added as a covari-

ate after logarithmic transformation. To localize significant voxel ef-

fects, contrast maps were subdivided according to the 48 regions of

the JHU-ICBM-DTI-81 white matter atlas. This allowed quantification

of the number of significant voxels within each regional mask, and

spatial identification of the peak voxel. We then extracted the individ-

ual’s mean fractional anisotropy value for clusters identified as signifi-

cantly different between responders and non-responders at baseline,

and for the same clusters at follow-up, to quantify progressive frac-

tional anisotropy change in these regions. For these clusters we also

estimated the values of other white matter diffusion tensor imaging

parameters: mean diffusivity (a composite measure as fractional an-

isotropy, which increases with the loss of structural barriers that nor-

mally restrict water diffusion); axial diffusivity (which is more specific

to axonal integrity and can be considered an index of axonal damage);

and perpendicular diffusivity, suggested to be a marker of reduction in

the myelin content, hence representing an index of axonal demyelin-

ation) (Song et al., 2002, 2003).

Socio-demographic and clinical characteristics were analysed using

one-way ANOVA for continuous variables, Mann-Whitney for skewed

distributions and chi-square for categorical variables. Repeated meas-

ures ANOVA were used for the analysis of extracted fractional anisot-

ropy values and tractography volumes. Analyses were conducted using

SPSS v.18.0.

Results

Baseline differences in white matter
microstructural integrity

Patients versus healthy control subjects

A total of 63 patients and 52 healthy control subjects underwent

an MRI scan at baseline, and their demographic and clinical char-

acteristics are presented in Table 1.

We first compared the white matter maps of the whole first

episode psychosis patient group with the maps of the healthy

controls at baseline. This comparison revealed areas of reduced

fractional anisotropy values across the brain in first episode psych-

otic patients (P50.05; FWE-corrected), with the most affected

tracts including corpus callosum, superior longitudinal fasciculus,

corona radiata and left cingulum and thalamic radiation (Fig. 1)

(for details of regions see Supplementary Table 1).

Responders versus non-responders

We then examined differences in white matter microstructural

integrity at baseline between responders and non-responders,

and found that non-responders had significantly lower fractional

anisotropy across multiple brain regions when compared to re-

sponders (P50.05; FWE-corrected) (Fig. 2A). The most affected

tracts comprised associative fibres, including the uncinate, stria

terminalis and superior frontal-occipital tract; commissural

fibres such as the corpus callosum; and several projections fibres,

such as the internal and external capsule and corona radiata.

The tracts with highest percentage of significant voxels were

those interconnecting frontal and temporal cortices (uncinate

and fornix) (Table 2). We re-ran this analysis including total

baseline PANSS scores as a covariate, together with follow-up

length, and the results remained significant, with an overlap in

the affected regions. There were no regions in which non-

responders showed significantly higher fractional anisotropy than

responders.

Non-responders versus healthy control subjects

Similarly, non-responders also had a significantly lower fractional

anisotropy across multiple white matter regions when compared to

healthy controls (P50.05; FWE-corrected). The most affected

tracts included associative tracts, such as the left uncinate, cingu-

lum and superior longitudinal fasciculus, and commissural tracts

such as the corpus callosum (for details of the regions see

Supplementary Fig. 1 and Supplementary Table 2) There were

no white matter regions where controls had significantly lower

fractional anisotropy values than non-responders.

Responders versus healthy control subjects

Interestingly, when we compared the baseline white matter maps

of the responders to those of the healthy controls, we found no

differences in fractional anisotropy values across the brain be-

tween these two groups.
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Differences in white matter
microstructural integrity at 12-weeks
follow-up and longitudinal changes
We compared cross-sectionally the white matter microstructural in-

tegrity at follow-up, in those 42 subjects with two usable scans: 20

responders and 22 non-responders. Non-responders continued to

display lower fractional anisotropy compared with responders,

mostly in the same brain tracts where they differed at baseline,

including the uncinate, corona radiata, fornix, external and internal

capsule and corpus callosum, although the differences appeared less

widespread (P50.05; FWE-corrected) (Fig. 2B and Table 3). In

addition, the cingulum and the superior and inferior longitudinal

fasciculus were also affected (P50.05; FWE-corrected).

Figure 1 White matter maps showing significantly decreased fractional anisotropy in all patients when compared to healthy control

subjects, at baseline (P5 0.05, FWE-corrected). Background image corresponds to the mean fractional anisotropy image in standard

MNI152 brain space (radiological view). Fractional anisotropy white matter skeleton is represented by green voxels. Red–yellow voxels

represent regions in which the fractional anisotropy was significantly lower in the patient group relative to the healthy control group.

Figure 2 White matter maps showing significantly decreased fractional anisotropy in non-responders when compared with responders, at

baseline (P50.05, FWE-corrected) (A); and at 12-weeks follow-up (P50.05, FWE-corrected) (B). Background image corresponds to the

mean fractional anisotropy image in standard MNI152 brain space (radiological view). Fractional anisotropy white matter skeleton is

represented by green voxels. Red–yellow voxels represent regions in which the fractional anisotropy was significantly lower in the non-

responder group relative to the responder group.
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We then evaluated longitudinal within-group changes over the

12 weeks. A whole-brain analysis of within-group, and Group �

Time interaction for fractional anisotropy change did not identify

any significant difference between responders and non-

responders. We then explored whether the regions identified at

baseline as being significantly different between responders and

non-responders at baseline had changed over time, and we found

an overall increase in fractional anisotropy over the 12-weeks

[F(1,42) = 16.7; P50.001]. Interestingly, there was no Group

(responders versus non-responders) � Time (baseline versus

follow-up) interaction for these fractional anisotropy changes

[F(1,42) = 2.53, P = 0.12], suggesting that changes were broadly

in the same direction in both groups.

To explore if changes in white matter microstructural integrity

were driven by volumetric changes, we explored whether there

had been longitudinal changes in the volume of the most affected

tracts. However, there was no significant longitudinal change in vol-

ume in any of the tracts analysed [right uncinate, F(1,41) = 0.367,

Table 2 White matter regions of fractional anisotropy reduction between non-responders and responders at baseline

JHU white matter
atlas region

Significant cluster
size (n voxels)

% Region
significant

t-statistic MNI coordinates of peak voxel (mm)

x y z

Uncinate

Left 70 91% 3.38 �33 �6 �14

Right 59 86% 2.24 35 �4 �14

Fornix

Left stria terminalis 270 76% 2.98 �34 �11 �15

Right stria terminalis 11 4% 2.64 34 �11 �15

Corticospinal

Left 203 75% 1.92 9 �29 �23

Right 135 51% 3.02 10 �27 �27

Cerebral peduncle

Left 436 72% 2.35 �9 �29 �20

Right 360 59% 3.40 10 �28 �19

External capsule

Right 781 67% 2.48 36 �7 �13

Left 790 61% 4.36 �35 �8 �13

Internal capsule

Left posterior limb 575 66% 2.64 �20 �14 0

Right anterior limb 480 58% 3.24 10 1 1

Left retrolenticular limb 372 47% 2.44 �24 �19 0

Left anterior limb 361 43% 3.00 �13 �1 4

Corpus callosum

Body 1985 63% 2.70 �13 17 24

Genu 1039 60% 3.55 �15 32 14

Splenium 1145 46% 2.13 1 �31 21

Corona radiata

Right anterior 1005 63% 3.26 27 28 10

Left anterior 942 56% 3.75 �15 33 15

Left posterior 364 48% 1.27 �21 �44 35

Left superior 578 42% 2.36 �22 �25 36

Right superior 591 42% 3.21 21 �16 36

Right posterior 153 20% 2.67 30 �60 19

Cerebellar peduncle

Left superior 99 48% 2.16 �5 �30 �21

Right superior 90 36% 2.46 7 �31 �16

Left inferior 66 33% 1.97 �13 �45 �32

Middle 753 33% 3.19 �23 �46 �36

Pontine cross tract 98 25% 2.35 �2 �30 �30

Medial lemniscus

Left 61 24% 2.13 �4 �38 �37

Right 30 12% 2.10 6 �34 �25

Superior frontal occipital

Right 18 23% 1.52 23 2 19

Left 9 10% 1.45 �21 5 19

JHU = Johns Hopkins University; % Region significant was obtained by dividing the number of significant voxels within each regional mask by the total number of voxels in

that mask.
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P = 0.549; left uncinate, F(1,41) = 0.681, P = 0.415; or fornix,

F(1,41) = 0.808, P = 0.374]. There was also no Group � Time inter-

action for white matter tracts volume (P = 0.44 to P = 0.78) and no

significant correlations were observed between longitudinal changes

in volumes and longitudinal changes in fractional anisotropy or

exposure to antipsychotics.

White matter microstructural integrity,
exposure to antipsychotics and
psychopathology
We further explored whether the fractional anisotropy differences

we observed between responders and non-responders were

accompanied by a change in other diffusion tensor imaging meas-

ures in these brain regions. Results showed that at baseline re-

sponders had significant lower mean and perpendicular diffusivity

than non-responders in the white matter regions that differen-

tiated these two groups [F(1,63) = 7.50, P50.001; and

F(1,63) = 17.17, P50.001, respectively]. In contrast, there were

no differences in axial diffusivity [F(1,63) = 2.374; P = 0.1].

Furthermore, we found an overall increase in axial diffusivity

[F(1,42) = 0.97; P = 0.32] and a decrease in mean diffusivity and

perpendicular diffusivity [F(1,42) = 0.1.17, P = 0.29; and

F(1,42) = 2.60, P = 0.11, respectively].

We then explored whether differences in fractional anisotropy

could be explained as an effect of antipsychotic medication. We

Table 3 White matter regions of fractional anisotropy reduction between non-responders and responders at 12-weeks
follow-up

JHU white matter
atlas region

Significant cluster
size (n voxels)

% Region
significant

t-statistic MNI coordinates of peak voxel (mm)

x y z

Uncinate

Left 58 81% 2.48 �34 �6 �14

Right 65 96% 1.88 36 �3 �16

External capsule

Left 831 64% 4.61 �33 �6 �13

Right 341 29% 2.55 36 �7 �13

Corona radiata

Left anterior 1014 59% 2.70 �15 36 �1

Right anterior 978 59% 3.49 23 19 18

Left superior 760 54% 3.56 �22 �25 35

Right superior 292 21% 3.47 23 �19 38

Left posterior 406 53% 2.19 �26 �30 27

Right posterior 21 3% 1.76 19 �26 35

Fornix

Left stria terminalis 202 58% 2.55 �28 �26 �8

Right stria terminalis 10 3% 2.63 34 �11 �15

Internal capsule

Left anterior limb 446 53% 2.51 �17 6 9

Right anterior limb 327 39% 3.13 21 4 15

Left retrolenticular limb 286 36% 2.01 �26 �24 8

Left posterior limb 160 18% 1.42 �22 �9 11

Right posterior limb 88 10% 2.25 20 �4 10

Corpus callosum

Genu 806 46% 2.91 �13 33 �3

Body 725 23% 3.01 15 17 25

Splenium 377 15% 2.10 �23 �54 17

Superior frontal occipital

Left 34 35% 2.25 �21 14 19

Right 26 32% 1.27 23 2 19

Superior longitudinal fasciculus

Left 331 24% 2.36 �35 �25 35

Right 367 24% 1.89 38 �39 28

Thalamic radiation

Left posterior 207 19% 1.73 �28 �53 18

Inferior longitudinal fasciculus

Left sagittal stratum 38 8% 2.54 �35 �11 �14

Right sagittal stratum 7 1% 2.19 36 �11 �14

Cingulum

Right 25 7% 2.30 10 17 26

JHU = Johns Hopkins University.
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found that, at baseline, the cumulative dose of antipsychotic was

not correlated with fractional anisotropy values in the regions that

discriminated responders from non-responders. However, the lon-

gitudinal change in fractional anisotropy (between baseline and

follow-up scans) within these brain regions was positively corre-

lated with the cumulative antipsychotic dose at follow-up

[r(40) = 0.37, P = 0.02], indicating that the higher the exposure

to antipsychotic medication over the 12-week period, the larger

the increase in fractional anisotropy (and therefore the improve-

ment in white matter microstructural integrity) (Fig. 3).

Additionally, for those same regions we also found a significant

negative correlation between exposure to antipsychotic medication

and perpendicular diffusivity [r(40) = �0.273, P = 0.046], but not

with mean and axial diffusivity.

Finally, in the regions that discriminated responders from non-

responders at baseline, a significant negative correlation was

observed between fractional anisotropy and baseline PANSS total

score [r(63) = �0.273, P = 0.046], as well as between PANSS total

scores and follow-up fractional anisotropy values in these regions

[r(42) = �0.581, P50.001]. However, there was no correlation

between change in psychotic symptoms and change in fractional

anisotropy.

Discussion
To our knowledge, this is the first longitudinal study investigating

white matter microstructural changes and treatment response in

first episode psychosis. In this large sample, we found that non-

responders already have significantly impaired white matter micro-

structure at baseline, when compared with both healthy control

subjects and future responders. In contrast, responders are not

distinguishable from controls. Furthermore, fractional anisotropy

differences between responders and non-responders remain pre-

sent, albeit to a lower extent, even at follow-up. Interestingly,

both patient groups show an increase in white matter microstruc-

tural integrity over time in these regions, which seems associated

with the extent of exposure to antipsychotics.

Our main finding is that at the time of the first episode of

illness, subsequent non-responders already show altered white

matter microstructural integrity than responders. So far, results

from the few existing studies assessing white matter microstruc-

tural integrity and clinical outcome have been inconsistent, pos-

sibly because of small samples, different follow-up periods and

longer duration of illness. However, consistent with our findings,

a cross-sectional tractography study showed that first episode

Figure 3 Relationship between total exposure to antipsychotic (AP) medications over the follow-up period [chlorpromazine (CPZ)

equivalents] and longitudinal change in fractional anisotropy, in responders (blue) and non-responders (red).
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patients who do not respond to 6 months of treatment have lower

fractional anisotropy than responders in the superior longitudinal

fasciculus and the uncinate (Luck et al., 2011). The uncinate has

been suggested to play an important role in the pathophysiology

of psychosis and response to treatment (Van Veelen et al., 2011)

and indeed it was the most significantly affected tract in our study.

In addition, we found substantial impairments in other tracts, such

as the stria terminalis. This tract is part of the extended amygdala,

and acts as a relay site within the main stress response system,

the hypothalamic–pituitary–adrenal (HPA) axis. Alterations in the

stress response have been linked to the pathophysiology of psych-

osis, as suggested by evidence of an enlarged pituitary gland and

raised salivary cortisol in early stages of illness (Garner et al., 2009;

Mondelli et al., 2010).

Interestingly, the cross-sectional comparison of the white matter

maps obtained at the 12-week follow-up showed that the differ-

ences between responders and non-responders were still present,

although less widespread. We found that higher PANSS scores

were correlated with lower fractional anisotropy in the regions

that differentiated non-responders from responders. This supports

previous evidence of a negative correlation between fractional an-

isotropy and PANSS positive symptoms, mainly in the left uncinate

and superior longitudinal fasciculus (Skelly et al., 2008). The pres-

ence of this negative correlation at both baseline and follow-up

suggests that this association may represent a ‘trait’ marker,

related to the underlying pathophysiology, which changes very

little with treatment. However, we cannot exclude that the altered

white matter integrity was already present in non-responders long

before illness onset, reflecting a different, possibly neurodevelop-

mental origin. Further support for a heterogeneous pathophysi-

ology across patients with psychosis comes from our finding that

responders show no difference in white matter integrity from con-

trols. This finding might also help to explain inconsistencies in

previous diffusion tensor imaging studies of psychosis. Although

studies in chronic patients suggest a reduced fractional anisotropy

when compared with control subjects (Kubicki et al., 2005), stu-

dies in first episode are less consistent (White et al., 2011).

Finally, these findings extend and confirm our previous data on

grey matter, in a different first episode psychosis sample, showing

that patients who subsequently do not experience symptom re-

mission are significantly different from both healthy controls and

those who have an episodic illness course, whereas this latter

group is indistinguishable from healthy control subjects (Mourao-

Miranda et al., 2012). Consistently with those data, we have also

found, in a sample partially overlapping with the one used in this

study, that non-responders have prominent hypogyria at insular,

frontal and temporal regions when compared with responders and

healthy control subjects, whereas responders are not distinguish-

able from healthy control subjects (Palaniyappan et al., 2013).

Taken together, this evidence supports the combined use of

white and grey matter measures as potential early neuroimaging

markers for short and long-term clinical outcome, which could

potentially guide treatment decisions.

Intriguingly, although there were no whole-brain significant lon-

gitudinal differences between groups, there was an increase in

fractional anisotropy values in the regions that differentiated re-

sponders and non-responders at baseline, which was positively

correlated with higher cumulative antipsychotic dose. Furthermore,

the increase in fractional anisotropy and axonal diffusivity was

accompanied by a decrease in mean and perpendicular diffusivity.

This finding is difficult to interpret, because of the paucity of pre-

vious longitudinal studies. Cross-sectional studies suggest that

chronic patients show more marked fractional anisotropy reduc-

tions than first episode patients, and the existing longitudinal stu-

dies also provide evidence of progressive changes in fractional

anisotropy after illness onset (Mori et al., 2007; Garver et al.,

2008; Mitelman et al., 2009; Wang et al., 2013). This was also

evident in a recent longitudinal study in first episode schizophre-

nia, which identified a progressive reduction in fractional anisot-

ropy at 6 weeks follow-up in the white matter microstructure

around the bilateral anterior cingulate gyrus and the right anterior

corona radiata (Wang et al., 2013). It is therefore intriguing to

speculate whether the increase we observed reflects a restoration

of white matter microstructural integrity, promoted by some ‘pro-

tective’ factors activated by antipsychotic medications. The impact

of antipsychotics on white matter remains controversial. Recently,

it has been suggested that first episode patients who receive more

antipsychotics show a greater reduction in white matter volume

(Ho et al., 2011), whereas other studies report no relationship

between fractional anisotropy and dose of antipsychotic medica-

tion (White et al., 2011; Wang et al., 2013). In contrast, some

studies suggested that antipsychotics have a pro-myelinating

effect, promoting myelin repair and oligodendrocyte differenti-

ation (Xiao et al., 2008), thus improving white matter microstruc-

tural integrity (Bartzokis, 2012). Similarly, a diffusion tensor

imaging animal study showed that mice that were concomitantly

treated with an antipsychotic and cuprizone, a copper chelator

that induces oligodendrocyte loss and demyelination, showed an

attenuation of the cuprizone-induced white matter changes com-

pared with mice receiving cuprizone alone (Chandran et al.,

2012). In patients, antipsychotics have been shown to increase

white matter volume and intracortical myelin (Bartzokis et al.,

2009). However, only the aforementioned study by Garver et al.

(2008) has used diffusion tensor imaging to evaluate patients

before and after antipsychotics. This study showed a reduction

in mean diffusivity over time in responders, interpreted as reflect-

ing a partial restoration of myelin integrity. Our results extend

these findings to first episode patients, using fractional anisotropy

as well as other diffusion tensor measures. In our study, there was

a positive correlation between fractional anisotropy and exposure

to antipsychotics, together with a negative correlation between

perpendicular diffusivity and exposure to these drugs. These

data are important, because although fractional anisotropy can

be regarded as a weighted average of the different eigenvalues,

perpendicular diffusivity may be modulated by myelin quantity

and has been suggested to be a marker of myelin content (Song

et al., 2002, 2003). Therefore, the longitudinal diffusion tensor

imaging changes we observed could represent an effect of anti-

psychotics on white matter, potentially resulting from changes in

myelin content. Finally, it is unlikely that the longitudinal fractional

anisotropy change we observed was related to volumetric

changes, as we found no significant difference in white matter

volume over time in the most affected tracts. This suggests that
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a reduction in white matter volume is unlikely to have driven our

findings.

Our study has a number of strengths. This is the first diffusion

tensor imaging study in first episode psychosis to use a longitu-

dinal design to explore the relationship to treatment outcome.

Second, this is the largest diffusion tensor imaging study con-

ducted to date in first episode psychosis, as previous studies

used an average sample size of 30 patients. Third, our study high-

lights the potential relationship between white matter and anti-

psychotics, supporting a role for these drugs in restoring white

matter microstructural integrity, while informing the neurobio-

logical basis of treatment response. The effect of antipsychotics

in white matter has been a matter of strong debate, and our study

supports a potential beneficial role of these drugs on this brain

functional component. Finally, this is one of the few applications

of tract-based spatial statistics to first episode psychosis and the

first time tract-based spatial statistics has been used to evaluate

treatment response in this particular patient population. Tract-

based spatial statistics offers several advantages over standard

voxel-based analytic techniques, particularly relevant to longitu-

dinal analyses, as it removes the need for spatial smoothing and

minimizes the methodological pitfalls caused by misalignment and

misregistration, consequently increasing the sensitivity and inter-

pretability of findings. Also, compared to standard tractography

techniques, tract-based spatial statistics is a fully automated pro-

cess, which allows the whole brain to be investigated, whereas

tractography, as a traditional region of interest approach, only

provides information on pre-selected regions, and suffers from

intrinsic operator variability.

In terms of limitation, 10 of our patients could not be contacted

at follow-up, and we cannot exclude that they may have repre-

sented a different group in terms of their white matter microstruc-

tural integrity. However, their demographic and clinical

characteristics were similar to the remaining sample, and this

bias is therefore unlikely.

In conclusion, this work provides evidence that white matter

microstructural integrity can be helpful in the early identification

of patients less likely to respond to antipsychotic drugs. In com-

bination with other neuroimaging and clinical measures, these

findings could considerably help patient stratification in psychiatry,

ultimately allowing individualized patient management from the

time of the first presentation to services. Furthermore, by identify-

ing underlying brain structure and connectivity as potential factors

moderating antipsychotic response, it raises the question as to

whether treatments that enhance and restore brain connectivity

may elicit a better response to antipsychotics in those who cur-

rently do not respond to them.
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Pérez-Iglesias R, Tordesillas-Gutiérrez D, Barker GJ, McGuire PK, Roiz-
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